
Neko: A quantum map-filter-reduce programming language

ELTON PINTO, Georgia Institute of Technology, USA

1 INTRODUCTION
Programming quantum computers is hard. One has to painstakingly write code that builds a circuit

using low-level quantum gates [Svore et al. 2018] [Abraham et al. 2019] [Luo et al. 2020]. In a way,

writing a quantum program is analogous to writing assembly: it is tedious, error-prone, and hard

to debug. The gate-level abstraction, albeit universal, is non-intuitive and too primitive to be used

for rapidly prototyping large-scale quantum applications. There is a need to develop high-level

abstractions that enable programmers to productively leverage the idiosyncrasies of quantum

computing: quantum parallelism, interference, and entanglement.

In this ongoing work, I present Neko, a high-level quantum programming language that exposes

a map-filter-reduce interface for exploiting quantum parallelism through the notion of first-class
superpositions.

2 BACKGROUND
A quantum computer works by manipulating qubits. Unlike classical bits, qubits can exist in a

superposition, a linear combination over basis states. Superposition enables the notion of quantum
parallelism where one can apply a reversible function over the entire superposition in parallel.

However, the caveat is that you can measure only one of the outputs. Quantum algorithms employ

interference to increase the probability of measuring the desired output.

Several quantum algorithms [Grover 1996] [Shor 1999] [Deutsch and Jozsa 1992] follow the

pattern of (1) prepare a superposition over the input space, (2) map a function over this superposition,

and (3) use interference to filter and reduce over the mapped space. It would then be natural to ask:

can we abstract over this pattern?

Suppose we are given an initial quantum state |𝜓 ⟩ = |0⟩⊗𝑛 |0⟩⊗𝑚 consisting of an 𝑛-qubit index

register and an𝑚-qubit data register. We then wish to abstract over the following transformation:

|𝜓 ⟩
superpose
−−−−−−−→

2
𝑛−1∑︁
𝑖=0

𝛼𝑖 |𝑖⟩ |0⟩⊗𝑚 (1)

map
−−−→

2
𝑛−1∑︁
𝑖=0

𝛼𝑖 |𝑖⟩ |𝑓 (𝑖)⟩ (2)

filter/reduce−−−−−−−−−→ 𝛽𝑠 |success⟩ |𝐺 (𝑓)⟩ + 𝛽𝑓 |failure⟩ |𝜓𝑓 ⟩ + 𝛽𝑒 |error⟩ |𝜓𝑒⟩ (3)

where𝐺 (𝑓) = 𝐺 (𝑓 (0), . . . , 𝑓 (2𝑛 − 1)) is a property of the function 𝑓 based on its individual values,

|success⟩, |failure⟩ and |error⟩ are marker indices that allow us to discern the nature of the measured

output of the data register, and |𝛽𝑠 |2 > 0, i.e., there is a non-zero probability of measuring the correct

result. Neko enables you to program in this style using the map-filter-reduce paradigm.

3 NEKO: A QUANTUMMAP-FILTER-REDUCE PROGRAMMING LANGUAGE
Neko is a strictly-typed functional programming language equipped with first-class superpositions,

allowing users to ergonomically leverage quantum parallelism. It supports a rich set of base types

(units, booleans, integers, floats, and lists), first-class functions, let-expressions, conditionals, tensors

(which are a generalization over pairs), and reference cells (or refs).

Graduate (MSc.) student advised by Vivek Sarkar, ACM number: 2093702, email: epinto6@gatech.edu.

2 Elton Pinto

1 (* Put a list of integers into superposition *)

2 let xs = superpose [0,1,2,3,4,5,6,7] in

3

4 (* Increment each number (in parallel) by 32 *)

5 let ys = map (𝜆 x. x + 32) xs in

6

7 (* Filter out even numbers from the superposition *)

8 let zs = filter (𝜆 x. x % 2 = 0) in

9

10 (* Sample from the superposition *)

11 sample zs

Fig. 1. Example Neko program that samples an even number

A Neko expression can be put into a superposition using the superpose primitive. A superposi-

tion is made up of individual portions called chunks each of which consists of an amplitude and

an expression. A superposition can be manipulated using map, filter, and reduce, and can be

sampled using sample, where the probability of observing one of its chunks is equal to the square

of its amplitude. An expression is said to execute in the context of a superposition if it is applied to

the chunks of a superposition via map, filter, or reduce.
map 𝑓 𝑒 applies the function 𝑓 to each portion of the superposition, leaving the amplitudes

unchanged. filter 𝑓 𝑒 increases the probability of sampling any chunk that satisfies the predicate

𝑓 . Finally, reduce 𝑓 𝑒 combines chunks using 𝑓 . The semantics of these operations is formally

denoted by Equation (1), Equation (2), and Equation (3).

An expression can be put into a superposition only if its corresponding type implements the

superposition interface. This interface requires the type to specify the number of chunks and a

procedure to produce each chunk given an index. For example, the list type could implement the

interface by specifying the number of chunks to be equal its length, with each chunk corresponding

to an individual element of the list. The superposition interface can also be implemented for scalar

types. For example, you can realize a superposition representing a fair coin toss by implementing

the interface for the boolean type, with true and false being the individual chunks.

The semantics of refs is complicated by the presence of superpositions in the language. If an

expression executing in the context of a superposition modifies a ref differently for at least two

chunks, then the ref becomes entangled with the superposition. Put another way, refs exhibit copy-

on-write behavior where each chunk modifies its own copy of the ref. An entangled ref cannot

be accessed or modified from outside the context of a superposition until it becomes unentangled,
which can be done by sampling all superpositions with which it has been entangled. The type

checker uses a conservative analysis to detect potentially entangled refs that are accessed outside

the context of a superposition.

The peculiar characteristics of superpositions coupled with the copy-on-write semantics of

reference cells gives rise to the 𝑒 | 𝜇 ↦→𝑚 𝑒′ | 𝜇′ "steps-to" relation, where 𝑒, 𝑒′ are expressions,
𝜇, 𝜇′ are stores, and𝑚 is the evaluation mode. The store 𝜇 maps locations 𝑙 to a tensor of values, and

is accessed as 𝜇 (𝑙) [𝑑] [𝑖], where 𝑑 is a dimension and 𝑖 is an index. Each superposition is annotated

with a location-dimension list, which keeps track of the refs that are potentially entangled with it.

The mode𝑚 can be either normal (𝑁) or superposed (𝑆𝑖 , where 𝑖 is an index) and is used to discern

expressions that are evaluated in the context of a superposition.

Neko: A quantum map-filter-reduce programming language 3

Figure 1 shows a simple Neko program that samples an even number from a list of integers.

Appendix A has additional examples along with the full syntax and select operational semantics.

4 COMPILATION TO QUANTUM CIRCUITS
Neko is compiled to a simple quantum circuit language with support for qubit management through

qubit registers, single-qubit and multi-qubit gates, qRAM, and measurement. The operational

semantics and typing rules are largely similar to that of Hietala et al. [2021] augmented with qubit

management and qRAM functionality.

An expression is put into a superposition by entangling an index register put into an equally

weighted superposition with data corresponding to its chunks. This encoding results in an ex-

ponential reduction in space-complexity, using only a logarithmic amount of space. map 𝑓 𝑒 is

implemented by compiling 𝑓 to a reversible gate (using techniques described by Amy et al. [2017]

and Li et al. [2022]) and applying it to the superposition. filter 𝑓 𝑒 is implemented using Grover

search over the predicate 𝑓 , giving us a quadratic improvement in time-complexity.

Realizing reduce 𝑓 𝑒 is not straightforward because the chunks of a quantum superposition

cannot share memory (which is precisely why refs are modelled as copy-on-write). Lu et al. [2018]

present a deterministic quantum adder for reducing superposition states that purportedly runs

exponentially faster than existing classical routines. If their claims are true, I could generalize

their work to handle any associative operator. Unfortunately, this is not the case. I show that their

algorithm ignores the effects of entanglement which in turn falsifies both, their correctness and

time-complexity claims.

One way of realizing reduce 𝑓 𝑒 is to replicate the 𝑛-element superposition |𝜓 ⟩ and output a

circuit that produces |𝜓 ′⟩ = |𝜓 ⟩ ⊗ · · · ⊗ |𝜓 ⟩. This state contains all possible permutations (with

repetition) of the 𝑛-element superposition. Reducing over 𝑓 can then be implemented by first

mapping 𝑓 and then filtering out the desired permutation. This solution, of course, undoes the

space-savings afforded by a superposition.

Are there cases where we can do better? Deutsch [1985] provides an answer. There exists a

class of functions 𝑓 that are computable by quantum parallelism (QPC), i.e., the transformation

from Equation (2) to Equation (3) can be realized with 𝛽𝑒 = 0 and little-to-no replication. The class

of QPC functions was characterized by Jozsa [1991] using a linear relations formalism. I hope to

leverage this in the Neko compiler.

5 RELATEDWORK
There have been attempts to develop high-level abstractions for programming quantum computers.

Tower [Yuan and Carbin 2022] approaches the problem from the perspective of designing quantum

data structures as pointer-based, linked data. Aleph [Paz 2022] develops the notion of quantum
universes, a high-level abstraction for manipulating quantum states. Neko differs from Aleph in

several regards: (1) superpositions in Neko are fine-grained and can be manipulated in more

sophisticated ways à la map-filter-reduce, (2) Neko attempts to tackle the problem of reducing a

superposition, (3) Neko presents a semantics for copy-on-write refs.

6 FUTUREWORK
The next steps for this work is to implement the Neko compiler, iron out any kinks, and prove

relevant properties (like type safety). I hope to continue exploring the implementation of the reduce
operator, leveraging the QPC characterization developed by Jozsa [1991]. An interesting future

direction would be to investigate richer primitives for manipulating the amplitudes of a chunk à la

quantum signal processing (QSP) [Low and Chuang 2017] and quantum singular value transforms

(QSVT) [Gilyén et al. 2019].

4 Elton Pinto

REFERENCES
Héctor Abraham, Ismail Yunus Akhalwaya, Gadi Aleksandrowicz, Thomas Alexander, G Alexandrowics, E Arbel, A Asfaw,

C Azaustre, P Barkoutsos, G Barron, et al. 2019. Qiskit: An open-source framework for quantum computing, 2019. URL
https://doi. org/10.5281/zenodo 2562110 (2019).

Matthew Amy, Martin Roetteler, and Krysta M Svore. 2017. Verified compilation of space-efficient reversible circuits. In

International Conference on Computer Aided Verification. Springer, 3–21.
David Deutsch. 1985. Quantum theory, the Church–Turing principle and the universal quantum computer. Proceedings of

the Royal Society of London. A. Mathematical and Physical Sciences 400, 1818 (1985), 97–117.
David Deutsch and Richard Jozsa. 1992. Rapid solution of problems by quantum computation. Proceedings of the Royal

Society of London. Series A: Mathematical and Physical Sciences 439, 1907 (1992), 553–558.
András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. 2019. Quantum singular value transformation and beyond:

exponential improvements for quantum matrix arithmetics. In Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing. 193–204.

Lov K Grover. 1996. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual
ACM symposium on Theory of computing. 212–219.

Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks. 2021. A Verified Optimizer for Quantum

Circuits. Proc. ACM Program. Lang. 5, POPL, Article 37 (jan 2021), 29 pages. https://doi.org/10.1145/3434318

Richard Jozsa. 1991. Characterizing classes of functions computable by quantum parallelism. Proceedings of the Royal Society
of London. Series A: Mathematical and Physical Sciences 435, 1895 (1991), 563–574.

Liyi Li, Finn Voichick, Kesha Hietala, Yuxiang Peng, Xiaodi Wu, and Michael Hicks. 2022. Verified compilation of Quantum

oracles. Proceedings of the ACM on Programming Languages 6, OOPSLA2 (2022), 589–615.
Guang Hao Low and Isaac L Chuang. 2017. Optimal Hamiltonian simulation by quantum signal processing. Physical review

letters 118, 1 (2017), 010501.
Xiaowei Lu, Nan Jiang, Hao Hu, and Zhuoxiao Ji. 2018. Quantum adder for superposition states. International Journal of

Theoretical Physics 57, 9 (2018), 2575–2584.
Xiu-Zhe Luo, Jin-Guo Liu, Pan Zhang, and Lei Wang. 2020. Yao. jl: Extensible, efficient framework for quantum algorithm

design. Quantum 4 (2020), 341.

Andres Paz. 2022. aleph. https://github.com/anpaz/aleph

Peter W Shor. 1999. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer.

SIAM review 41, 2 (1999), 303–332.

Krysta Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher Granade, Bettina Heim, Vadym Kliuchnikov, Mariia

Mykhailova, Andres Paz, and Martin Roetteler. 2018. Q# enabling scalable quantum computing and development with a

high-level dsl. In Proceedings of the real world domain specific languages workshop 2018. 1–10.
Charles Yuan and Michael Carbin. 2022. Tower: Data Structures in Quantum Superposition. Proceedings of the ACM on

Programming Languages 6, OOPSLA2, Article 134 (oct 2022), 30 pages. https://doi.org/10.1145/3563297

https://doi.org/10.1145/3434318
https://github.com/anpaz/aleph
https://doi.org/10.1145/3563297

Neko: A quantum map-filter-reduce programming language 5

A MORE ABOUT NEKO
A.1 Example Programs
In each of these examples,

• Neko is extended with support for pattern matching and arrays

• range 𝑖 𝑗 is syntax sugar for [𝑖, 𝑖 + 1, . . . , 𝑗 − 1].
• for 𝑖 in 𝑗 ; do 𝑒 end is syntax sugar for 𝑒 [𝑖 := 𝑗 [0]]; 𝑒 [𝑖 := 𝑗 [1]]; . . . ; 𝑒 [𝑖 := 𝑗 [𝑛]]

Summing up a list of integers. The following program sums all of the odd numbers from 1 to 20.

1 let x = superpose (range 1 20) in
2

3 (* Filter out the odd numbers *)

4 let odd = filter (𝜆 x. x % 2 <> 0) xs in
5

6 (* Compute the sum *)

7 let sum = reduce (𝜆 x y. x + y) odd in
8

9 (* Sample the solution *)

10 sample sum

Solving a system of equations. The following program was ported to Neko from Aleph [Paz 2022].

1 let x = superpose (range 0 4) in
2 let y = superpose (range 0 4) in
3

4 (* Create all possible pairs of inputs *)

5 let input = x ⊗ y in
6

7 (* Filter out the input pairs that satisfy both equations *)

8 let output = filter (𝜆 (x, y).

9 let eq1 = 4 * x + 5 * y in
10 let eq2 = (-6) * x + 20 * y in
11 eq1 = eq2

12) inputs

13 in
14

15 (* Sample one of the solution pairs *)

16 sample output

Instruction ordering. The following program executes all possible instruction orderings for a

simple register-based assembly language containing three instructions: add, load, and store. It
uses exponentially less space for storing all possible instruction orderings compared to a classical

implementation.

1 (* Instruction = (opcode, dst, src1, src2) *)

2

3 (* dst := src1 + src2 *)

6 Elton Pinto

4 let add dst src1 src2 = 0 ⊗ dst ⊗ src1 ⊗ src2

5 in
6

7 (* dst := mem[src1 + src2] *)

8 let load dst src1 src2 = 1 ⊗ dst ⊗ src1 ⊗ src2

9 in
10

11 (* mem[dst + src1] := src2 *)

12 let store dst src1 src2 = 2 ⊗ dst ⊗ src1 ⊗ src2

13 in
14

15 let r0 = 0 in
16 let r1 = 1 in
17 let r2 = 2 in
18

19 (* Initialize register file as a 3-element zero-initialized array *)

20 let regs = [| 0; 3 |] in
21

22 (* Initialize memory as a 32-element zero-initialized array *)

23 let mem = [| 0; 32 |] in
24

25 (* Execute an instruction *)

26 let execute (op, dst, src1, src2) =

27 if op = 0 then

28 regs[dst] := regs[src1] + regs[src2]

29 else if op = 1 then

30 regs[dst] := mem[(regs[src1] + regs[src2]) % 32]

31 else if op = 2 then

32 mem[(regs[dst] + regs[src1]) % 32] := regs[src2]

33 else

34 ()

35 in
36

37 let prog = superpose [

38 add r0 r1 r2,

39 load r1 r2 r0,

40 store r0 r1 r1

41]

42 in
43

44 let prog_orderings = prog ⊗ prog ⊗ prog in
45

46 (* Since `execute` is executed in the context of a superposition,

47 `mem` and `regs` exhibit copy-on-write behavior and become

Neko: A quantum map-filter-reduce programming language 7

48 entangled with `prog_orderings` *)

49 let executions = map (𝜆 instrs.

50 for instr in instrs; do

51 execute instr

52 end

53) prog_orderings

54 in
55

56 (* Sample one of the executions *)

57 sample executions

A.2 Syntax

Bool 𝑏 ::= true | false
Integer 𝑖 ∈ Z

Real 𝑟, 𝛼 ∈ R
Binary ops 𝑏𝑜𝑝 ::= + | ∗ | and | or | = | <> | %
Unary ops 𝑢𝑜𝑝 ::= − | not
Dimension 𝑑 ∈ N
Location 𝑙

Variable 𝑥

Type 𝜏 ::= unit | bool | Z | R Base types

| ref 𝜏 Ref type

| list 𝜏 List type

| 𝜏1 ⊗ 𝜏2 Tensor type

| ⟨(𝜏t, 𝜏chunk)⟩ Superposition type

Expression 𝑒, 𝑓 ::= () | 𝑏 | 𝑖 | 𝑟 Literals

| [𝑒1, . . . , 𝑒𝑛] Lists

| ⟨(𝛼1, 𝑒1), . . . , (𝛼𝑛, 𝑒𝑛)⟩ [(𝑙,𝑑)] | superpose 𝑒 | sample 𝑒 Superpositions

| 𝑥 | 𝜆𝑥.𝑒 | 𝑒1 𝑒2 Lambda forms

| 𝑒1 ⊗ 𝑒2 | fst 𝑒 | snd 𝑒 Tensors

| let 𝑥 = 𝑒1 in 𝑒2 Binding

| 𝑒1 𝑏𝑜𝑝 𝑒2 Binary ops

| 𝑢𝑜𝑝 𝑒 Unary ops

| if 𝑒1 then 𝑒2 else 𝑒3 Conditionals

| 𝑒1; 𝑒2 Sequencing

| ref 𝑒 | 𝑒1 := 𝑒2 | !𝑒 References

| map 𝑓 𝑒 | filter 𝑓 𝑒 | reduce 𝑓 𝑒 Map, filter, reduce

8 Elton Pinto

mode𝑚 𝑓 = 𝜆𝑥.𝑒 𝑥𝑠 = ⟨(𝛼𝑖 , 𝑣𝑖)⟩𝐴𝑛
𝑓 𝑣 𝑗 | 𝜇𝐿′ ⇝𝑆 𝑗 ,𝑓 𝑣 ′𝑗 | 𝜇′𝐿′

map 𝑓 𝑥𝑠 | 𝜇 ↦→𝑚 ⟨(𝛼𝑖 , 𝑣 ′𝑖)⟩
𝐿′

𝑛 | 𝜇′
E-MapSup

mode𝑚 𝑓 = 𝜆𝑥.𝑒 𝑥𝑠 = ⟨(𝛼𝑖 , 𝑣𝑖)⟩𝐴𝑛
𝑘 ∈ 𝑃 ⊆ {1, . . . , 𝑛} 𝑘 ′ ∈ {1, . . . , 𝑛} \ 𝑃

𝑓 𝑣𝑘 | 𝜇𝐿′ ⇝𝑆𝑘 ,𝑓 true | 𝜇′𝐿′ 𝑓 𝑣𝑘 ′ | 𝜇𝐿′ ⇝𝑆𝑘′ ,𝑓 false | 𝜇′𝐿′
filter 𝑓 𝑥𝑠 | 𝜇 ↦→𝑚 ⟨(𝑝 (𝑖), 𝑣𝑖)⟩𝐿

′
𝑛 | 𝜇′ where

𝑝 (𝑖) =
{
𝛽𝑠 𝑖 ∈ 𝑃

𝛽𝑓 otherwise

, |1 − |𝛽𝑠 |2 | < 𝜖

E-FilterSup

mode𝑚 𝑓 = 𝜆𝑥.𝜆𝑦.𝑒 𝑥𝑠 = ⟨(𝛼𝑖 , 𝑣𝑖)⟩𝐴𝑛
𝑓 is associative modified?(𝑓) = ∅

reduce 𝑓 𝑥𝑠 | 𝜇 ↦→𝑚 ⟨(𝛽𝑠 ,𝐺 (𝑓)), (𝛽𝑓𝑖 , 𝑣 𝑓𝑖)𝑘 , (𝛽𝑒𝑖 , 𝑣𝑒𝑖)𝑙 ⟩
𝐴

𝑛
| 𝜇 where

𝐺 (𝑓) reduces the values 𝑣0, . . . , 𝑣𝑛 using 𝑓 in an arbitrary order

|𝛽𝑠 |2 > 0

E-ReduceSup

Fig. 2. Operational semantics for map-filter-reduce on superpositions

A.3 Operational Semantics
Figure 2 shows the operational semantics for the map-filter-reduce primitives on a superposi-

tion. There is evidently a lot going on. Nonetheless, at a high level, these inference rules encode

Equation (1), Equation (2), and Equation (3) with additional judgements for handling references.

Some definitions and shorthand notation:

• The mode𝑚 judgement asserts that the evaluation mode is𝑚.

• The modified?(𝑓) judgement returns a list of references captured and potentially modified

by 𝑓 .

• 𝜇𝐿 is shorthand for 𝜇 (𝑙) [𝑑], where 𝐿 = [(𝑙, 𝑑)] is a location-dimension list.

• 𝑒 | 𝜇𝐿′ ⇝𝑚,𝑓 𝑒′ | 𝜇′
𝐿′ is shorthand for the sequence of judgements

– modified?(𝑓) = 𝑅

– 𝐿′ = updims(𝑅, 𝜇)
– 𝑒 | 𝜇𝐿′ ↦→𝑚 𝑒′ | 𝜇′

𝐿′

where updims(𝑅, 𝜇) returns a location-dimension list where the dimension of each location

𝑙 ∈ 𝑅 is incremented by one and the store 𝜇 is updated correspondingly.

• ⟨(𝛼𝑖 , 𝑣𝑖)⟩𝐴 is shorthand for ⟨(𝛼1, 𝑣1), . . . , (𝛼𝑛, 𝑣𝑛)⟩𝐴.

	1 Introduction
	2 Background
	3 Neko: a quantum map-filter-reduce programming language
	4 Compilation to quantum circuits
	5 Related work
	6 Future work
	References
	A More about Neko
	A.1 Example Programs
	A.2 Syntax
	A.3 Operational Semantics

