
Neko: A quantummap-filter-reduce programming language
Elton Pinto

Georgia Institute of Technology

Introduction

Programming quantum computers is hard. One has to painstakingly write code

that builds a circuit using low-level quantum gates. The gate-level abstraction,

albeit universal, is non-intuitive and too primitive to be used for rapidly proto-

typing large-scale quantum applications (See Fig. 1).

There is a need to develop high-level abstractions that enable programmers

to productively leverage the idiosyncrasies of quantum computing: quantum

parallelism, interference, and entanglement.

1 def what_am_i(qc: QuantumCircuit):
2 for qubit in range(nqubits): qc.h(qubit)
3 for qubit in range(nqubits): qc.x(qubit)
4 qc.h(nqubits-1)
5 qc.mct(list(range(nqubits-1)), nqubits-1)
6 qc.h(nqubits-1)
7 for qubit in range(nqubits): qc.x(qubit)
8 for qubit in range(nqubits): qc.h(qubit)

Figure 1. Can you guess what this program does?

Observation

Several quantum algorithms follow the pattern of (1) prepare a superposition

over the input space, (2) map a function over this superposition, and (3) use

interference to filter and reduce over the mapped space. It would then be

natural to ask: can we abstract over this pattern?

|ψ〉 superpose−−−−−→
2n−1∑
i=0

αi |i〉 |0〉⊗m

map−−→
2n−1∑
i=0

αi |i〉 |f (i)〉

filter/reduce−−−−−−→ βs |success〉 |G(f)〉 + βf |failure〉 |ψf〉 + βe |error〉 |ψe〉

Solution

Neko is a high-level quantum programming language that exposes a map-filter-

reduce interface for exploiting quantum parallelism through the notion of first-

class superpositions. It supports a rich set of base types (units, booleans, inte-

gers, floats, and lists), first-class functions, let-expressions, conditionals, tensors

(which are a generalization over pairs), and reference cells (or refs).

1 let x1 = superpose [0,1,2,3,4,5,6,7] in
2 let x2 = map (λ x. x + 32) x1 in
3 let x3 = filter (λ x. x % 2 = 0) x2 in
4 let xs = x1 ⊗ x3 in
5 let result = reduce (λ (x1,_) (x2,_). x1 + x2) xs in
6 sample result

Figure 2. Example program showcasing Neko’s map-filter-reduce interface

First-class Superpositions

A Neko expression can be put into a

superposition using the superpose
primitive if its corresponding type

implements the superposition interface

(Fig. 3). A superposition can be

manipulated using map, filter, and
reduce, and can be sampled using
sample.

1 interface superposition {

2 type t

3 type chunk

4

5 val num_chunks : t -> int

6 val chunk : t -> i -> chunk

7 }

Figure 3. The superposition interface

Semantics of references

If an expression executing in the context of a superposition modifies a ref dif-

ferently for at least two chunks, then the ref becomes entangled with the super-

position. We can control what forms of entanglement materialize by defining

where references can be captured or acquired.

Chunk Local Storage (CLS)

In this system, an expression executing in the context of a superposition is not

allowed capture or acquire a reference from the outside.

k ∈ P ⊆ {1, . . . , n} k′ ∈ {1, . . . , n} \ P
f vk | φ 7→ true | µ′ f vk′ | φ 7→ false | µ′′

filter f 〈(αi, vi)〉n | µ 7→ 〈(βi, vi)〉n | µ such that
∃ βj with j ∈ P and |1 − |βj|2| < ε

E-FilterSup

G(f, (v0, . . . , vn−1)) = v
whereG reduces v0, . . . , vn−1 using f in an arbitrary order

reduce f 〈(αi, vi)〉n | µ 7→ 〈(βs, v), (βfi
, vfi

)k, (βei
, vei

)l〉 | µ
where |βs|2 > 0, k + l + 1 = n, and vfi

, vei
are arbitrary

E-ReduceSup

Figure 4. Operational semantics for filter and reduce on superpositions under CLS

Γ | Σ ` f : τc → τ ′
c with φ Γ | Σ ` xs : 〈(τt, τc)〉 with φ

Γ | Σ ` map f xs : 〈(τt, τ ′
c)〉 with φ

T-MapSup

Figure 5. Typing rule for map on superpositions under CLS

CLS with immutable access

In this system, an expression executing in the context of a superposition can only

capture an immutable handle to a reference.

CLS with no restrictions

In this system, no restrictions are placed on where refs can be captured or ac-

quired. Entangled superpositions can be materialized, as shown in Fig. 6.

1 let entangle a b =
2 let s = ref 0 in
3 let f = λ i x. s := (!s * 10) + i ; x in
4 (mapi f a) ⊗ (mapi f b)

Figure 6. Entangling two superpositions under the CLS with no restrictions semantics

Compilation to Quantum Circuits

Neko is compiled to a simple quantum circuit language with support for qubit

management through qubit registers, single-qubit and multi-qubit gates, qRAM,

and measurement. The operational semantics and typing rules are largely similar

to that of Hietala et al. (2021) augmented with qubit management and qRAM

functionality.

0 . . . n

. . .

N

k

|0〉⊗N H
|ψ〉

|0〉⊗k C Jchunk(e, 0)K C Jchunk(e, n)K

C Jsuperpose eK, N = log2(num_chunks(e))

l

k

|0〉⊗l C JeK
C JfK

|ψ〉

|0〉⊗k |x〉

C Jmap f eK when e : 〈(τt, τc)〉

l

k

|0〉⊗l C JeK
Grover(C JfK)

|ψ〉

|0〉⊗k |0〉⊗k

C Jfilter f eK when e : 〈(τt, τc)〉

C Jreduce f eK ∼= C Jfilteri perm1...n (map (λ~x.reduce f ~x) e⊗n)K when e : 〈(τt, τc)〉

Figure 7. Select compilation rules

Realizing reduce is not straightforward because the chunks of a quantum su-
perposition cannot share memory. One approach is shown in Fig. 7. While it

works in the general case, it undoes the space-savings afforded by using super-

positions.

Are there cases where we can do better? Jozsa (1991) addresses the issue by

characterizing functions that are computable by quantum parallelism (QPC) using a

linear relations formalism. What’s left to unpack is if this formalism can efficiently

be leveraged to materialize a better compilation scheme for reduce.

Limitations and FutureWork

Current Status: A compiler is being worked on; not fully functional yet. Ref-

erence semantics in flux. Properties like type safety need to be proved.

Neko does not expose the full power of quantum computation. An interesting

future direction would be to investigate richer primitives for manipulating the

amplitudes of a chunk à la quantum signal processing (QSP) and quantum singular

value transforms (QSVT). Future work could also look into better compilation

schemes for reduce.

References

Kesha Hietala, Robert Rand, Shih-Han Hung, XiaodiWu, andMichael Hicks. 2021. AVerified Optimizer for Quantum

Circuits. Proc. ACM Program. Lang. 5, POPL, Article 37 (jan 2021), 29 pages. https://doi.org/10.1145/

3434318

Richard Jozsa. 1991. Characterizing classes of functions computable by quantum parallelism. Proceedings of the

Royal Society of London. Series A: Mathematical and Physical Sciences 435, 1895 (1991), 563–574.

Advised by Vivek Sarkar, Thomas Conte, and Jeffrey Young POPL’23 Contact: epinto6@gatech.edu

https://doi.org/10.1145/3434318
https://doi.org/10.1145/3434318

	References

